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The patient as the center of the clinical trial universe in the clinical research enterprise. The main constituents of the clinical trial enterprise — patients, academic centers, industry
sponsors (big and small pharma), government/cooperative group sponsors, regulatory agencies, patient advocacy organizations and CROs—need to work together, with the patient
as the center of this clinical trial universe. AMA, African Medicines Agency; CDSCO, Central Drugs Standard Control Organization (India); CMS, Centers for Medicare and Medicaid
Services; ECA, external control arm; EMA, European Medicines Agency; HTA, Health Technology Assessment; NMPA, National Medical Products Administration (China).

Subbiah V. The next generation of evidence-based medicine. Nature Medicine 2023, 49-58.
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ITC plays a Crucial Role in Health Technology Assessment

 When considering a new technology for reimbursement, private and national
payers prefer evidence from direct treatment comparisons by standard
pairwise meta-analysis of head-to-head randomized controlled trials (RCTSs)
comparing the new technology to the current established practice or standard
of care in the patient population for which the new technology is indicated.

* Inthe absence of head-to-head RCTs meeting these requirements, payers
often expect to see evidence from indirect treatment comparisons including
Bucher’s method, network meta-analysis (NMA) or population adjusted indirect
comparison (PAIC) to demonstrate the clinical value of the new technology.



Health Technology Assessment (HTA)

 The HTA dossier is typically submitted to a national agency, such as The
National Institute for Health and Care Excellence (NICE) in England, who
assesses the product’s clinical and economic value relative to current
clinical practice.

e The HTA agency determines whether a product is deemed to provide

sufficient incremental value at an acceptable price to justify its use by the
health service.

e A successful HTA submission is one of the most significant hurdles in the
market access journey.



The feasibility assessment of performing an ITC (NMA vs. PAIC):

Is there a
(via common
comparators) to

compare the treatments
of interest regarding the
outcomes of interest?

Are there
in study design,
patient, or outcome
characteristics across
comparisons that are likely
modifiers of the relative
treatment effects?

since they do
not require a connected
network or common
comparator and can adjust
for differences in the
baseline risk factors
between the treatment
groups.



Bucher’s Method for Indirect Comparisons
(only aggregate data)



Bucher’s method for indirect comparisons
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e Can be used in a simple ITC to compare outcomes

between A and B (Fig 1A) or across a star-shaped network
of treatments, where several treatments are compared to
common comparator P (Fig 1B).

Assume that the trials included in the ITC are similar with
regards to the study design, population, outcome
measurements, and the distribution of treatment effect-
modifiers (i.e., study and patient characteristics that have
an independent impact on treatment outcome); and
relative effects are transportable;

Unsuitable for performing ITCs with more complex
networks of treatments, e. g. closed loops or multi-arm
trials.



Bucher’s method for adjusted indirect comparisons

Focus on relative effects to keep randomization

Compute relative effect of A vs P, such as log risk
ratio logRR,, with corresponding SE,;, and relative
effect comparing B vs P (e.g. logRRg, and SEg,),

The indirect comparison effect estimate of A vs B will
be the difference between the two relative effect
estimates (i.e. logRR,; will be computed as logRR,; _
logRR,, — logRRgp With SE 5 = \/SEjP+SE§P)

Transitivity in one measurement scale means non-
transitivity in another scale unless under the null




Network Meta-analysis (NMA)
(only aggregate data)



Network Meta-analysis (NMA)

NMA expands the scope of a conventional pairwise meta-analysis to simultaneously compare
multiple treatments, synthesizing both direct evidence within randomized controlled trials (RCTs)
and indirect evidence across RCTs to improve statistical precision and reduce bias.

@ Aripiprazole




Network Meta-analysis (NMA): Key Points

 Network meta-analysis is a technique for comparing three or more interventions
simultaneously in a single analysis by combining both direct and indirect evidence
across a network of studies.

 Network meta-analysis produces estimates of the relative effects between any pair
of interventions in the network, and usually yields more precise estimates than a
single direct or indirect estimate. It also allows estimation of the ranking and
hierarchy of interventions.

e Avalid network meta-analysis relies on the assumption that the different sets of
studies included in the analysis are similar, on average, in all important factors that
may affect the relative effects.

Chaimani A, Caldwell DM, Li T, Higgins JPT, Salanti G. Chapter 11: Undertaking network meta-analyses. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA
(editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane, 2022.



Network Meta-analysis (NMA): Key Points

* Incoherence (also called inconsistency) occurs when different sources
of information (e. g. direct and indirect) about a particular intervention

comparison disagree.

e Grading confidence in evidence from a network meta-analysis begins by
evaluating confidence in each direct comparison. Domain-specific
assessments are combined to determine the overall confidence in the

evidence.

Chaimani A, Caldwell DM, Li T, Higgins JPT, Salanti G. Chapter 11: Undertaking network meta-analyses. In: Higgins JPT, Thomas J, Chandler J, Cumpston M, Li T, Page MJ, Welch VA
(editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane, 2022.



Network Meta-analysis (NMA)

In addition to the assumptions that the trials included in the ITC are similar and relative
effects are transportable (CB-NMA), NMA typically assumes consistency between direct
and indirect evidence.

Effect: Avs B ? =7 AvsC—-BvsC
(Direct) (Indirect)

Direct

“ , n e Consistency (Transitivity) Equation

6AB = 6AC — SBchrA + B +* C
e Choice of Effect Measures Matters




Valid and biased indirect comparisons: Effect modification

Moderate disease

Trial 1 Trial 2 Trial 1 Trial 2
y
deltay
Vs. A [T
Valid indirect est vs. B
Severe disease
y
deltay
Vs. A
H Valid indirect est vs. B
Overall population
¥ 70:30 30:70 70:30 30:70
moderate: severe moderate: severe moderate: severe moderate: severe
deltay
Vs. A BIASED Indirect estimate of Cvs. B

B A (Placebo) C A (Placebo) Bvs. A Cvs. A 15



‘Trial 1: Porsche
versus Golf’

Porsche - Golf = 2s

‘Trial 2: Volvo
versus Golf’

Volvo - Golf = 8s

— Volvo versus Porsche: 8-2=6s (Indirect comparison)

No, biased indirect estimate due to
Is a Volvo faster than a Porsche? imbalance in treatment effect modifier
(snow) across comparisons 16



Consistency in NMA

deltay
Vs. A

Trial 1

Trial 2

Trial 3

B A (Placebo)

Bvs. A

C

Cvs. A

A (Placebo)

Cvs.B

17



Inconsistency in NMA

deltay
Vs. A

Trial 1 Trial 2 Trial 3

B A (Placebo) C A (Placebo) C B

moderate population moderate population mild population

Inconsistency between direct
estimate of C vs. B and indirect
-estimate

18

18



Network Meta-analysis (NMA):

Contrast-Based (CB) NMA vs. Arm-Based (AB) NMA

CB-NMA

Lu and Ades (2004, 2006, 2009) and .
many others

Main Estimand: conditional OR
Model relative effects (e.g. InOR)
Fixed study intercepts

Assumptions:
0 C-MAR *
O Relative effects are exchangeable
Cannot include single-arm trials

Preserve randomization .

AB-NMA

Zhang et al (2014, 2017), Lin et al. (2016, 2017), Hong et
al. (2016), Wang et al. (2020, 2021a)

Main Estimand: conditional or marginal RD/RR/OR
Model absolute effects with any link functions
Random study intercepts

Assumptions:
0 A-MAR
O Studies are exchangeable

Naturally include single-arm trials (Wang et al 2021b)

See further comparisons and discussions by Dias & Ades (2016) and White et al. (2019)



Network Meta-analysis (NMA):
Contrast-Based (CB) NMA vs. Arm-Based (AB) NMA

White et al. (2019): “The marginal estimands discussed above use the average underlying risk of
the studies in the NMA, which is unlikely to be representative of the target population. External
information about clinical populations is therefore valuable for such an analysis. Dias and Ades
(2016) argued that, while the overall intervention effect is best estimated in the NMA data set
(because randomization promotes internal validity), the overall outcome prevalence is best
estimated from clinical registries or other observational sources external to the NMA data set.
Any of the models can be used in conjunction with external information to estimate the marginal
effect of treatment in a well-defined population.”

CB-NMA AB-NMA
e Other estimands are estimated assuming that Other estimands are estimated assuming correlation
OR is transportable/independent of the between treatment-specific event rates with the

baseline prevalence in a population baseline prevalence in a population



Non-collapsibility of Odds Ratio (OR)

An illustration example to demonstrate the collapsibility of the Risk Difference (RD) and Relative
Risk (RR), and non-collapsibility of OR between outcome (YY), treatment (X) and strata (2).

Z=1 | Z=0 | Crude

X=1 X=0 X=1 X=0 X=1 X=0
30 60 40 20 120 30
20 40 60 30 30 120

0.80 0.60 040 020 0.60 0.40

0.20 0.20 0.20
1.33 2.00 1.50
2.67 2.67 2.25

 RRvaries across the two strata, but it is collapsible across Z as it can be computed as the
ratio of weighted average risks.



Non-collapsibility of Odds Ratio (OR)

If a target population is comprised with multiple subpopulations with
different baseline risks, then non-collapsibility of OR suggests that other
estimands estimated assuming that OR is transportable or independent of
the subgroup-specific baseline risks vs. the overall baseline risk may differ
for the target population. Thus, it may not have a good interpretation.

Whitcomb BW, Naimi Al. Defining, Quantifying, and Interpreting "Noncollapsibility" in Epidemiologic
Studies of Measures of "Effect". Am J Epidemiol 2021; 190(5): 697-700.



Q,: Is the OR Transportable in MA?
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Figure: Quantiles of the Spearman’s rank correlation coefficient p between the odds ratio and baseline risk among 40,243 meta-
analyses, stratified by number of studies in a meta-analysis. (Xiao et al. JCE 2022)



Treatment Treatment Treatment

Three Hypothetical Case Studies:

120 180
Table 1. Hypothetical data under 70 140 210
constant risk ratio (RR) 80 160 240
assumption with 1000 subjects in 90 180 270
each arm and fixed baseline 100 200 300
risks (in Arm A) “ 110 290 330

120 240 360
The orange-colored cells are “ 130 260 390
assumed not available in the R 140 280 420
available in u 160 320 480

170 340 510

180 360 540

190 380 570

200 400 600



M
Three Hypothetical Case Studies:
110 160
: 2 70 120 170
Table 2. Hypothetical data under _
constant risk difference (RD) 80 130 180
assumption with 1000 subjects in 90 140 190
each arm and fixed baseline 100 150 200
risks (in Arm A) “ 110 160 210
120 170 220
The orange-colored cells are “ 130 180 230
assumed not available in the “ 140 190 240
observed data and assumed 150 200 250
available in the full data 160 210 260
170 220 270
180 230 280
190 240 290
200 250 300



N
Three Hypothetical Case Studies:
113 161
. 2 70 131 184
Table 3. Hypothetical data under _
constant odds ratio (OR) 80 148 207
assumption with 1000 subjects in 90 165 229
each arm and fixed baseline 100 182 250
risks (in Arm A) “ 110 198 270
120 214 290
The orange-colored cells are “ 130 230 310
assumed not available in the “ 140 246 328
observed data and assumed 150 261 346
available in the full data 160 e 364
170 291 381
180 305 397
190 319 413
200 333 429



Q,: Can data help us to choose AB vs CB models?

Table 4. Summary of DIC under constant RR, RD and OR assumptions

- Observed data |Full data

Fixed RR AB-homt?

AB-het? 42 44
CBs3 50 69
Fixed RD AB-homt? 48 60
AB-het? 42 43
CBs3 47 59
= GHNeIEEE AB-hom!t 38 38
AB-het? 42 42
CB3 36 36

1The arm-based NMA with homogeneous variance and equal correlation assumption.
2The arm-based NMA with heterogeneous variance and equal correlation assumption.
3The contrast-based NMA with homogeneous variance.

2 Lower deviance information criterion (DIC) indicates better fit




Q,: Can CB- and AB-NMA Estimate Marginal Effects Accurately Given
External Data?
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Figure 2. The conditional treatment
effects comparing treatment B
versus the baseline treatment A for
the observed and full data, based on
the contrast-based NMA with
homogeneous variance. The three
rows correspond to the constant RR,
RD and OR assumptions,
respectively. The red arrows indicate
the magnitude of bias due to model
misspecification.
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Take Home Messages: CB-NMA vs. AB-NMA

e Multiple models can give similar goodness-of-fit, suggesting sensitivity analyses using different
models. In some cases, data may help us to choose one model over the other, which can lead to
better inference.

e Aswe all know that it is dangerous to extrapolate beyond the scope of the model, it can be
dangerous to estimate other estimands assuming that OR is independent of the baseline
prevalence in a target population using CB-NMA.

e AB-NMA is an attractive alternative approach estimating various estimands. If AB-NMA and CB-
NMA give different inference, it suggests that some assumptions are not valid, e.g. treatments
included in the network might have been examined in different subpopulations and the
transitivity assumption may not hold.



Population adjusted indirect comparison (PAIC): MAIC and STC
(IPD Iin Index Trial & AD in Comparator’s Trial)

Note: If you have multiple IPDs and some ADs, you may consider multi-level network meta-
regression (ML-NIVIR) to synthesize evidence from network of studies (not discussed).

ROYAL Ro
Statistics in Socig
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DATA | EVIDEMCE | DECISIONS

J. R. Statist. Soc. A (2020) Medical Decision Malking
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Adjustment: Application of Multilevel
Network Meta-regression to a Network
of Treatments for Plaque Psoriasis

David M. Phillippo(®, Sofia Dias(, A. E. Ades, Mark Belger, Alan Brnabic,
Daniel Saure, Yves Schymura, and Nicky J. Welton

Background. Network meta-analysis (NMA) and indirect comparisons combine aggregate data (AgD) from multiple
studies on treatments ol interest but may give biased estimates il study populations differ. Population adjustment
methods such as multilevel network meta-regression (ML-NMR) aim to reduce bias by adjusting for differences in
study populations using individual patient data (IPD) from | or more studies under the conditional constancy
assumption. A shared eflect modilier assumption may also be necessary lor identifiability. This article aims Lo
demonstrate how the assumptions made by ML-NMR can be assessed in practice to obtain reliable treatment effect
estimates in a target population. Methods. We apply ML-NMR to a network of evidence on treatments for plaque
psoriasis with a mix of IPD and AgD trials reporting ordered categorical outcomes. Relative treatment effects are
estimated for cach trial population and for 3 external target populations represented by a registry and 2 cohort stud-
ies. We examine residual heterogeneity and inconsistency and relax the shared effect modifier assumption for each
covariate in turn. Results, Estimated population-average treatment effects were similar across study populations, as
differences in the distributions of effeet modifiers were small. Better fit was achieved with ML-NMR than with
NMA, and uncertainty was reduced by explaining within- and between-study variation. We found little evidence that
the conditional constancy or shared effect modifier assumptions were invalid. Conclusions. ML-NMR extends the
NMA framework and addresses issues with previous population adjustment approaches. It coherently synthesizes
evidence from [PD and AgD studies in networks ol any size while avoiding aggregation bias and noncollapsibility
bias, allows for key assumptions to be assessed or relaxed, and can produce estimates relevant to a target population
for decision-making.



Motivation for population adjusted indirect comparisons

Let consider a simple star-shaped network: 1) in the AP trial

(labelled AvP), we can estimate the relative effect &AP(A,JP); 2)in

the BP trial (labelled BvP), we can estimate the relative effect G
&BP(BUP) The Bucher’s method and standard network meta-
analysis makes the consistency assumption so the effect of A
versus B would be dAB(T) = dAp(Avp) dBP(va)

However, &AB(T) is not specific to a target population (labelled T), and biased if the

transitivity assumption does not hold. Intuitively, &AB(T) would be valid for some
mixture of the AvP and BvP population.

Population adjusted methods, unlike NMA, aim to estimate a relative effect for a
specific population: (AvP), (BvP), or other target population.



PAIC assumptions to control for population differences:

« Studies must have similar designs, e. g. same outcome definitions. PAIC
methods cannot adjust for structural difference between studies.

 The index trial population should be broader than the comparator trial
populations on all important baseline characteristics (including prognostic
factors and effect modifiers).

* For example, if index trial had excluded vaccinated subjects, we would have no
Information on treatment outcomes in vaccinated subjects, thus not possible to
adjust for differences in vaccine status in a comparison against a comparator
trial if it contained vaccinated subjects. In this situation, we would require:

v" the fraction of vaccinated subjects in a comparator trial is small enough and
therefore has a negligible effect on outcomes, or

v Vaccine only has a negligible effect on outcomes.



Anchored PAIC versus Unanchored PAIC:

Both Matching Adjusted Indirect Comparison (MAIC) and Simulated
Treatment Comparison (STC) can be used to carry out either an “anchored”
indirect comparison, where there is a common comparator arm in each trial,
or an “unanchored” indirect comparison, where there is a disconnected
treatment network or single-arm studies. An unanchored MAIC or STC
effectively assumes that absolute outcomes can be predicted from the
covariates; that is, it assumes that all effect modifiers and prognostic factors
are accounted for. This assumption is very strong, and largely considered
impossible to meet.

NICE DSU Technical Support Document (#18) .



http://nicedsu.org.uk/wp-content/uploads/2017/05/Population-adjustment-TSD-FINAL.pdf

Anchored PAIC versus Unanchored PAIC:

The NICE recommendations:

 Anchored comparison may be considered when there is connected evidence with a common
comparator. Unanchored comparisons may only be considered where single-arm studies are
involved, or in the absence of a connected network of randomized evidence.

e Submissions using anchored population adjusted analyses need to provide evidence that they
are less likely to produce biased estimates of treatment difference than could be achieved
through standard methods, and that population adjustment would have a material impact on
relative effect estimates due to the removal of substantial bias.

e Submissions using unanchored population adjusted analyses need to provide evidence that
absolute outcomes can be predicted with sufficient accuracy in relation to the relative
treatment effects.

NICE DSU Technical Support Document (#18) .



http://nicedsu.org.uk/wp-content/uploads/2017/05/Population-adjustment-TSD-FINAL.pdf

Anchored PAIC versus Unanchored PAIC:

The NICE recommendations:

e QOutcome regression methods should adjust for all effect modifiers and any prognostic
variables that improve model fit in anchored comparisons. In unanchored comparisons,
all effect modifiers and prognostic factors should be adjusted for, in order to reliably
predict absolute outcomes. In practice, these requirement rarely hold.

* Indirect comparisons should be carried out on the linear predictor scale.

NICE DSU Technical Support Document (#18) .



http://nicedsu.org.uk/wp-content/uploads/2017/05/Population-adjustment-TSD-FINAL.pdf

Current Debate on MAIC vs. STC

Methods for population adjustment with limited access to
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simulation study
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| Sofia Dias!?

| A.E. Ades' | Nicky I. Welton'

Standard network meta-analysis and indirect comparisons comhbine aggre-
gate data from multiple studies on treatments of interest, assuming that any
factors that interact with treatment effects (effect modifiers) are balanced
across populations. Population adjustment methods such as multilevel network
meta-regression (ML-NME), matching-adjusted indirect comparison (MAIC),
and simulated treatment comparison (STC) relax this assumption using indi-
vidual patient data from one or more studies, and are becoming increasingly
prevalent in health technology appraisals and the applied literature. Motivated
by an applied example and two recent reviews of applications, we undertook an
extensive simulation study to assess the performance of these methods in a range
of scenarios under various failures of asumptions. We investigated the impact
of varying sample size, missing effect modifiers, strength of effect modification
and validity of the shared effect modifier assumption, validity of extrapolation
and varying between-study overlap, and different covariate distributions and
correlations. ML-MME and STC performed similarly, eliminating bias when the
requisite assumptions were met. Serious concerns are raised for MAIC, which
performed poorly in nearly all simulation scenarios and may even increase bias
compared with standard indirect comparisons. All methods incur bias when an
effect modifier is missing, highlighting the necessity of careful selection of poten-
tial effect modifiers prior to analysis. When all effect modifiers are included,
ML-NMR and 5TC are robust techmigues for population adjustment. ML-NMR
offers additional advantages over MAIC and STC, including extending to larger
treatment nebworks and producing estimates in any target population, making
this an attractive choice in a variety of scenanios.

KEYWORDS
effect modification, indirect com parison, individual patient data, malching-adjusied indinect
comparison, multilevel network meta-regresion, simuhisd ireatment comparson
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Abstract

Population-adjusted indirect comparisons estimate treatment effects when
access to individual patient data is limited and there are cross-trial differences
in effect modifiers. Popular methods include matching-adjusted indirect com-
parison (MAIC) and simulated treatment comparison (STC). There is limited
formal evaluation of these methods and whether they can be used to accu-
rately compare treatments. Thus, we undertake a comprehensive simulation
study to compare standard unadjusted indirect comparisons, MAIC and STC
across 162 scenarios. This simulation study assumes that the trials are investi-
gating survival outcomes and measure continuous covariates, with the log haz-
ard ratio as the measure of effect. MAIC yields unbiased treatment effect
estimates under no failures of assumptions. The typical usage of STC produces
bias because it targets a conditional treatment effect where the target estimand
should be a marginal treatment effect. The incompatibility of estimates in the
indirect comparison leads to bias as the measure of effect is non-collapsible.
Standard indirect comparisons are systematically biased, particularly under
stronger covariate imbalance and interaction effects. Standard errors and cov-
erage rates are often valid in MAIC but the robust sandwich variance estimator
underestimates variability where effective sample sizes are small. Interval esti-
mates for the standard indirect comparison are too narrow and STC suffers
from bias-induced undercoverage. MAIC provides the most accurate estimates
and, with lower degrees of covariate overlap, its bias reduction outweighs the
loss in precision under no failures of assumptions. An important future objec-
tive is the development of an alternative formulation to STC that targets a mar-
ginal treatment effect.

KEYWORDS

clinical trials, comparative effectiveness research, health technology assessment, indirect
treatment comparison, oncology, simulation study



Current Debate on MAIC vs. STC

Recetved: 3 Movember 212 | Accepiad: 1 Deremiber 214

DO WL sl B 5T

Statistics .
LETTER TD THE EDITOR WILEY

Conflating marginal and conditional treatment effects:
Comments on “Assessing the performance of population
adjustment methods for anchored indirect comparisons: A
simulation study”

Antonio Remiro-Azdcar'® | Anna Heath'?® | Gianluca Baio®

'Department of Satistical Science,
University Caollege London, London, UK
2Child Health Evaluative Sciences, The

Hospital for Sick Children, Taronio,
Canada

In this commentary, we highlight the importance of (1) carefully consider-
ing and clarifying whether a marginal or conditional treatment effect is of
interest in a population-adjusted indirect treatment comparison; and (2) devel-
R oping distinct methodologies for estimating the different measures of effect.
University of Toronto, Toronto, Cntaria, The appropriateness of each methodology depends on the preferred target of
Canada inference.
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We thank Remiro-Azdcar, Heath, and Baio (R-AHB) for their letter to the editor,! in response to our recent article
presenting a simulation study comparing the performance of methods for population-adjusted indirect comparison.?
R-AHB discuss the important issue of target estimands with noncollapsible effect measures, expanding upon the discus-
sion in sections 4.3 and 7 of our article.? R-AHB distinguish between marginal and conditional treatment effect estimates
and explain that matching-adjusted indirect comparison (MAIC) targets marginal effects whereas simulated treatment
comparison (STC) and multilevel network meta-regression (ML-NMR) target conditional treatment effects. They con-
clude that “methods like MAIC are valid for population-based inference, but not “fit for purpose” when inference is
at the individual level, whereas methods like ML-NMR are valid for inference at the individual level, but not designed
for population-based inference.” Furthermore, they assert that marginal treatment effect estimates are necessary for
population-based inference as required for decision-making in Health Technology Assessment (HTA).

We welcome and encourage debate of these issues, which—despite much discussion in the literature on randomized
controlled trials (RCTs)*® and observational epidemiology’®—have largely been overlooked in the literature on popu-
lation adjustment and meta-analysis to date. However, whilst we agree with R-AHB that population-based inference is
required for HTA, we disagree that methods like ML-NMR are not appropriate to obtain population-average estimates for
HTA. In this response, we further clarify the use of conditional estimates to inform population-average treatment effects
and why we believe these are appropriate target estimands for decision making. We also correct some important inaccu-
racies in R-AHB's letter regarding the characterization of the methods (in particular ML-NMR) and interpretation of our
simulation study results.
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Abstract

Population adjustment methods such as matching-adjusted indirect comparison
(MAIC) are increasingly used to compare marginal treatment effects when there
are cross-trial differences in effect modifiers and limited patient-level data. MAIC
is based on propensity score weighting, which is sensitive to poor covariate over-
lap and cannot extrapolate beyond the observed covariate space. Current out-
come regression-based alternatives can extrapolate but target a conditional
treatment effect that is incompatible in the indirect comparison. When adjusting
for covariates, one must integrate or average the conditional estimate over the rel-
evant population to recover a compatible marginal treatment effect. We propose
a marginalization method based on parametric G-computation that can be easily
applied where the outcome regression is a generalized linear model or a Cox
model. The approach views the covariate adjustment regression as a nuisance
model and separates its estimation from the evaluation of the marginal treatment
effect of interest. The method can accommodate a Bayesian statistical framework,
which naturally integrates the analysis into a probabilistic framework. A simula-
tion study provides proof-of-principle and benchmarks the method's performance
against MAIC and the conventional outcome regression. Parametric G-
computation achieves more precise and more accurate estimates than MAIC, par-
ticularly when covariate overlap is poor, and vields unbiased marginal treatment
effect estimates under no failures of assumptions. Furthermore, the marginalized
regression-adjusted estimates provide greater precision and accuracy than the
conditional estimates produced by the conventional outcome regression, which
are systematically biased because the measure of effect is non-collapsible.

KEYWORDS
causal inference, health technology assessment, indirect treatment comparison, marginal
treatment effect, outcome regression, standardization



Matching Adjusted Indirect Comparison (MAIC)

Adjust the differences between populations by weighting patients in the index trial so that the average
characteristics (and SDs if continuous) match the comparator’s population.

e Compare the characteristics of the IPD trial to be
weighted against the target population

» Effect modifiers refer to characteristics that (" Tesmerts
impact the relative treatment effect \; Coffee oo
» Prognostic variables refer to characteristics that ¥ [ Treatment effect ] [ Tiredness
directly affect the outcome, but not the relative <)
treatment effect on the outcome. S @ )

e (Calculate and check the MAIC weights
» NICE provides detailed instruction and R code — http://nicedsu.org.uk/technical-support-
documents/population-adjusted-indirect-comparisons-maic-and-stc/

» R MAIC package https://cran.r-project.org/web/packages/maic/index.html.
e Check the balance of the weighted trials

e Compare the weighted and the unweighted outcome, and evaluate the uncertainty



http://nicedsu.org.uk/technical-support-documents/population-adjusted-indirect-comparisons-maic-and-stc/
https://cran.r-project.org/web/packages/maic/index.html

Matching Adjusted Indirect Comparison (MAIC)

To estimate patient weights through PS, MAIC must match both effect modifiers and prognostic variables in
the index trial to that of the comparator’s population: Method of Moments Weights

* The objective is to ensure that the means [and SDs if continuous] of the covariates of the
reweighted index trial patients match the means [and SDs] of the comparator’s population.

* |PDinthe index trial: covariate vector X; , withi = 1, ...,n, where n is # of patients.

 AD in the comparator’s population: the means [and standard deviations (SDs) if continuous
variables, as Var(X) = E(X?)+ E%(X), create additional covariates X?] of the covariates as vector
X5.
e The weight, which is equivalent to a propensity score, assigned to patient i is @; =
exp(X] 6)
i=, exp(X; 0)

with the vector 8 estimated as the solution to:

n . X;exp (X! 9) X =0 YT, Ziexp (Z19)
T, exp (X] 0) d LI, exp (2] 0)

This estimator has unique solutions and converges to the true value for 0.

= 0,where Z; = X; — Xp

Signorovitch JE, Sikirica V, Erder MH, Xie J, Lu M, Hodgkins PS, et al. Matching-Adjusted Indirect Comparisons: A New Tool for Timely Comparative Effectiveness Research. Value in Health. 2012;15:940-7.
Signorovitch JE, Wu EQ, Yu AP, Gerrits CM, Kantor E, Bao Y, et al. Comparative Effectiveness Without Head-to-Head Trials. Pharmacoeconomics, Methodological Considerations. 2010;28(10):935-45.



Matching Adjusted Indirect Comparison (MAIC):

Estimating treatment effects on MAIC reweighted populations

* To estimate treatment effects on MAIC reweighted populations, we denote the outcome for
individual i in index trial as Y; and use the estimated weights @; to form the weighted estimator in
the comparator’s population P

n P
Y lel wlYl
(P) no
i=1 Wi

e Although it is a simple weighted mean, we use a weighted (generalized) linear model to correctly
calculate standard errors using robust sandwich estimators.

e Sandwich estimators are derived empirically from the data rather than making overly strong
assumptions about the weights, to account for the fact that the weights @; are estimated rather
than fixed and known.

* Effective sample size (ESS) = O, @;)%/2 - 1wl .



Matching Adjusted Indirect Comparison (MAIC):
Connection to Calibration Estimation

* In sample survey, the calibration estimation choose weights that match the means (and standard
deviations if continuous), i.e., Y1, w;X; = Xp, by minimizing some objective function }.1*.; D(w;) with
. w; = 1.Ingeneral, D(w;) is a distance between w; and the uniform weights 1/n.

* The entropy balance weights use the entropy distance, D (w;) = w; log w;, which is equivalent to
method of moments weights.

e Other types of distance such as the quadratic distance or the absolute distance can be applied as well.

e MAIC with maximum ESS is equivalent to the calibration estimation minimizing quadratic distance

1
Z?:l D(Wl) — ?zl(wl 1/n)2 l 1W Zn 1Wl + nZ'

Jackson D et al. Alternative weighting schemes when performing matching-adjusted indirect comparisons.



https://onlinelibrary.wiley.com/doi/epdf/10.1002/jrsm.1466

Simulated Treatment Comparison (STC) @-------- -5

STC involves estimating an outcome regression model for the relationship
between population characteristics and outcome in an index trial with IPD,
and then using the model to estimate that outcome for the comparator’s
trial population (with only AD).

e Fit an outcome regression model in the index trial g(MXiAIA) = XiaP;

e Estimate the outcome of treatment A on the population of comparator’s
trial B by substituting in the mean covariate values of trial B as

g(ux,|B) = XgB;
e |Indirect comparisons should be carried out on the linear predictor scale,
.e. g(A|B) vs g(ug,|B).




Simulated Treatment Comparison (STC) @-------- s

Alternatively, to overcome the issue due to E(g(X)) # g(E(X)) for

nonlinear link functions, patient profiles can be simulated to reflect the
comparator population by

e Assuming covariance between effect modifiers and prognostic variables in
index trial A applies to comparator’s trial B.

e Setting means to those from the comparator’s trial B and and simulate X ;5
and predict g(,uxl.B|B) = X;g based on the outcome model from trial A

e Carry out the comparison on the marginal outcome

Parametric G-computation for compatible indirect treatment comparisons with limited individual patient data



https://pubmed.ncbi.nlm.nih.gov/35485582/

Conclusion: Indirect Treatment Comparisons: When Are
They Needed and How Do They Work?

NMA is the gold standard for indirect comparisons of multiple treatments, however incomplete
evidence networks and heterogeneity (among other things) between studies may limit the use.

STC and MAIC can overcome these challenges by carrying out a targeted comparison between
outcomes for specific treatment arms of interest.

Statistical adjustment is required to reduce confounding in the comparisons. STCs achieve this with
the use of outcome predictive models, while MAIC relies on reweighting subjects.

In practice, it is important to consider multiple approaches as sensitivity analyses and to provide
totality of evidence as indirect treatment comparisons is at high risk of bias no matter which

approach is chosen.
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